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Abstract: Monitoring of adherent cells in culture is routinely performed in biological and
clinical laboratories, and it is crucial for large-scale manufacturing of cells needed in cell-
based clinical trials and therapies. However, the lack of reliable and easily implementable
label-free techniques makes this task laborious and prone to human subjectivity. We present a
deep-learning-based processing pipeline that locates and characterizes mesenchymal stem cell
nuclei from a few bright-field images captured at various levels of defocus under collimated
illumination. Our approach builds upon phase-from-defocus methods in the optics literature and
is easily applicable without the need for special microscopy hardware, for example, phase contrast
objectives, or explicit phase reconstruction methods that rely on potentially bias-inducing priors.
Experiments show that this label-free method can produce accurate cell counts as well as nuclei
shape statistics without the need for invasive staining or ultraviolet radiation. We also provide
detailed information on how the deep-learning pipeline was designed, built and validated, making
it straightforward to adapt our methodology to different types of cells. Finally, we discuss the
limitations of our technique and potential future avenues for exploration.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Mesenchymal stem cells (MSCs) [1] are undifferentiated stromal cells commonly derived from
bone marrow and adipose tissue. Unlike pluripotent embryonic stem cells, MSCs are multipotent
and thus are limited in their differentiation capacity—they mainly become osteocytes (bone),
chondrocytes (cartilage) and adipocytes (fat). Despite this limitation, MSCs have been shown
to hold great potential as a cell therapeutic agent [2], evident in the sheer number of ongoing
clinical trials for a variety of diseases and conditions. Routine practice in a clinical trial involves
the cultural expansion of MSCs from autologous (derived from the same patient) or allogeneic
(derived from a healthy donor) sources, followed by the administration of the MSCs either
intravenously or in the extravascular compartment. Since appropriate cell dosage and condition
are crucial for successful treatment, the ability to count MSCs accurately as well as track their
growth will be instrumental for higher quality clinical research. Although MSCs are nearly
transparent in bright-field images, they can be observed noninvasively using phase imaging
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methods, as shown in Fig. 1. However, MSCs grown to high density in a two-dimensional
environment, e.g., in culture flasks, can result in their clustering, making it hard to distinguish
cells in close proximity. Conventional cell counting methods such as cell segmentation algorithms
and manual hemocytometer-assisted counting may not be able to accurately quantify the number
of MSCs, whereas commercial cell counters like flow cytometers are severely invasive due
to the need to detach cells from the substrate. While fluorescent staining of the nucleus is
a rigorous approach to cell counting, as nuclei generally do not touch each other (as shown
in Fig. 1), it is also invasive; the teratogenic nature of the fluorescent dye and the ultraviolet
radiation needed for common nucleic acid stains may alter the physiology of the MSCs. On the
other hand, non-invasive methods such as coherent anti-Stokes Raman spectroscopy (CARS)
[3] or holography [4] require complicated optical systems not easily implementable in standard
commercial microscopes commonly found in clinical laboratories. Finally, methods based on
cell confluency (e.g., [5]) rely on rough estimation of average cell size and therefore are prone
to miscounting in heterogeneous, growing or differentiating cell cultures. Hence, in recent
years, various approaches based on phase contrast [6] and holographic imaging [7,8] have been
implemented to estimate cell numbers grown on flat culturing substrates and on microcarriers [9].

Fig. 1. Bright-field image, quantitative phase image obtained by ±25 µm defocusing, and
nuclei-stained fluorescence image of a colony of MSCs. Scale bar is 100 µm.

More recently, deep learning has become a popular tool for biological imaging applications.
Deep convolutional neural networks (CNNs) came to the forefront of machine learning after
such a network [10] achieved the highest accuracy score (25% error rate) in the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). Advances in computational power as well
as improvements in stochastic gradient descent methods and automatic differentiation helped
bring deep neural networks to the forefront, with ImageNet error rates easily reaching single digit
numbers for all the contestants in 2017. In bio-imaging, deep neural networks have been used for
segmentation [11], detection [12,13] and counting [14] based on stained images. For label-free
applications, quantitative phase images from digital holographic microscopy has been used to
predict nucleic acid stains [15], autofluorescence images have been used to predict histological
staining [16], and focal stacks have been used to predict various fluorescence labels [17].

Here, we propose an original deep-learning approach to MSC counting and nuclei quantification
based on contrast induced by optical thickness variations in the sample. Physics of light
propagation dictate that these thickness variations in a transparent specimen induces deterministic
image patterns at various levels of defocus; a focal stack of images is used as input for many
quantitative phase imaging techniques for this reason. Notably, the nucleus is the largest organelle
in the cell, and therefore it emerges from the otherwise flat cytosol of MSCs. Basic features of
the nucleus, such as size and shape, can also be used as a proxy for cellular states that correlate
with therapeutic potency [18]. We hypothesize that, since the focal stack contains the information
needed to reconstruct the optical thickness, this information can be directly utilized by a trained
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neural network to predict the location and shape of nuclei in the specimen without the need to
explicitly reconstruct the quantitative phase image. The latter approach would’ve been expensive
and could introduce bias due to the well-known need for mathematical priors in quantitative phase
reconstruction; priors are needed to fill in missing information crucial for a visually pleasing
quantitative phase image, but this information is likely not necessary for nuclei detection and
quantification.

Our pipeline consists of a neural network trained using sets of images, each capturing a
specimen focused at different depths, to predict whether each pixel in an input set of images falls
within a nucleus. The output of the neural network is then fed into by an automated detection
framework to detect, locate and characterize nuclei. Our approach is label-free, does not require
contrast modalities such as phase contrast or differential interference contrast (DIC), and relies
only on microscope equipment readily available in commercial microscopes. In this paper, we
will explore ways to design such neural networks and detail solutions to the engineering challenges
involved in automating the cell counting process. We will give examples for when our technique
accurately counts the number of cells and quantifies their shape statistics, and we will also discuss
ways to improve results for more challenging cases. Our goal is to provide sufficient details so
that our approach can be used as a generalized scheme to develop fast and noninvasive techniques
for characterization and counting of the various cell types used in biomedical applications.

2. Design

Our imaging and processing pipeline design originates from the idea that the optical thickness
profile, i.e., the phase, of our otherwise transparent specimen provides label-free imaging contrast,
without the need for custom hardware. When the specimen is illuminated by a collimated beam,
information about its phase profile is embedded in the axial evolution of intensity images (i.e.,
diffraction patterns) captured at different levels of defocus; this principle is what guides many
explicit phase imaging methods, such as those based on the transport of intensity equation
(TIE) [19–23] or contrast transfer functions (CTFs) [24,25]. From preliminary experiments
with quantitative phase imaging, we found that it was sometimes possible to visually locate
nuclei in MSCs due to the presence of nucleoli, but this task was difficult to automate while
guaranteeing accurate results. Furthermore, quantitative phase imaging methods are by themselves
computationally challenging due to ill-posedness of the measurements. Therefore, we decided to
leverage deep learning and skip the explicit reconstruction of the phase profile, feeding the neural
network with raw images that would normally be used as input to quantitative phase imaging
algorithms so that the network can exploit the implicit phase profile information embedded
therein to predict which pixels in the image correspond to nuclei.

As shown in Fig. 2, the analytic pipeline starts with patches of images containing raw diffracted
intensities. These patches are then fed into a neural network trained to predict whether the center
of each patch is located inside the nucleus of an MSC. The raw output of the neural network is
then fed into a detection process that locates blob-like nuclei; an ellipse is fit to each blob, and
the average pixel value inside the ellipse is used in a final sieving step to remove false positives.
In addition to this design, we also considered several alternative designs:

• end-to-end regression network to compute cell counts
We could design a regression network that directly outputs cell counts from a set of input

images. It would be much easier to use than our two-step approach, but it would be much harder
to analyze the network to determine how it can be improved, due to the lack of meaningful
structure in the resulting network. Furthermore, such networks must be trained on larger patches
containing multiple nuclei, and thus would possibly require more training data. An end-to-end
network might also more easily fall into undesirable local minima, due to the required increased
complexity needed.

• end-to-end regression network to output nuclei locations/statistics
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Fig. 2. Overview of the imaging and processing pipeline; blocks used only during training
are shown in green with dashed lines and slanted text.

It is not obvious what would be a neural network architecture that can directly output a variable
number of nuclei locations from a set of input images. Such a neural network would have either
a very large number of outputs, which would be inefficient, or it would have a variable number of
outputs, which would not be straight-forward to implement.

• abstract intermediate representation
Another alternative would be to use a more abstract intermediate representation, for example

filled circles or Gaussian profiles centered on nuclei as opposed to a binary image of nuclei.
However, we find that this conflicts with the principle of CNNs: we want the transformation from
focal stack to nuclei image to be as spatially invariant in (x, y) as possible to facilitate training
and reduce the complexity of the network, but an arbitrary geometric shape would imply a much
more complicated relationship between output pixel value and input patch, leading to the network
having to learn to recognize entire cells as opposed to small fragments of a cell.

In the rest of this section, we will explain the design of each step in our proposed pipeline.

2.1. Images with implicit phase information

We designed our cell counting pipeline for specimens imaged through a 10 × /0.4 NA (numerical
aperture) objective onto a camera with 2048 × 2048 pixels of size 6.5 µm behind a 510 nm to
550 nm bandpass filter, as illustrated in Fig. 3. The exact equipment for capturing these images
will be described in Section 3. With this magnification, nucleus-stained fluorescent images
of MSCs yielded nuclei with diameters ranging from roughly 20 pixels to 40 pixels (13 µm to
26 µm).

From the literature on contrast transfer functions and multi-distance transport-of-intensity
equation imaging [23,24,26,27], images taken at small amounts of defocus yield trustworthy
information about high-frequency components of the phase profile but are noise-dominated
for low-frequency components. On the other hand, images taken at high amounts of defocus
yield better information about low frequency components but are inaccurate for high frequency
components, in part due to spatial and temporal incoherence in the light source. Therefore, for a
more complete picture, we choose to take two pairs of images, one pair with small defocus on
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Fig. 3. Simplified optical diagram of a standard light microscope. For phase imaging,
the light source is approximately collimated by the condenser aperture and illuminates the
specimen; a camera sensor (not shown) located at the intermediate image plane captures an
image of the specimen after the light has been filtered by a bandpass emission filter. For
fluorescent imaging, the filter cube’s dichroic (dashed diagonal) mirror allows excitation
light to excite the fluorescent label, which in turn generates longer bandwidth emission light
that is unreflected by the dichroic mirror and passes through to the imaging sensor.

either side of the focal plane, and one pair with high defocus. There is no need to capture a dense
focal stack with evenly spaced images either; doing so would only increase redundancy at the
cost of increased hardware complexity and acquisition time.

Given a nominal wavelength of 530 nm, the depth of field (which is also twice the minimum
defocus distance to achieve maximum contrast for the highest frequency phase features) comes to
∼3.3 µm. For simplicity, we chose a defocus of ±1 µm for capturing high frequency spatial phase
information. Empirically, we found that a defocus of ±25 µm yielded acceptable low frequency
information about nucleus structure; nucleoli were still visible in the difference image, and
±25 µm was the minimum defocus distance for maximum contrast on periodic phase features with
6.6 µm periods, which roughly corresponded to twice the observed nucleoli size. Higher defocus
resulted in lower contrast due to incoherence and appearance of artifacts due to non-uniformity
of the illumination. In addition to the two defocus pairs of images, we also image the sample at
the focal plane; this is to both calibrate for the illumination intensity and gain in the camera as
well as allow the neural network to learn about and remove unwanted elements such as dust and
camera non-uniformities.

The literature also suggests an imaging scenario where the illumination light is mostly
coherent—both temporal and spatial incoherence reduces contrast of the obtained images [26].
This is achieved in our design by the bandpass filter to increase temporal coherence as well as the
stopped-down aperture to increase spatial coherence.

After collecting the images, we scale all the images in each set by a constant scale factor so
that the in-focus image has an average pixel value of 1.0; this increases robustness to camera
gain and illumination variations as well as eliminate the need for the neural network to also learn
that absolute light levels are irrelevant when extracting phase imaging. We also use only the
difference of the two pairs of defocus images; this eliminates some non-uniformities and allows us
to provide a priori information about the imaging system, namely that we are primarily interested
in the phase profile. Therefore, each set of images is reduced from five images to three images.

2.2. Neural network classifier

Since our goal is to predict whether the center pixel of a patch is inside the nucleus or not, we
employed a binary classifier design template for our neural network, illustrated in Fig. 4.

Using this template, we tested ten different network designs, summarized in Table 1. In all
of the designs, the input to the neural network is a 3-channel 61 × 61 pixel image patch, with
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Fig. 4. Diagram of the neural network architecture. Two different designs for ConvBlk and
five different sets of depth parameters (P,Q,R,S) are summarized in Table 1.

Table 1. The ten different network designs tested.a

name ConvBlk design activation P Q R S weights

A4 one 5 × 5 convolutional layer ReLU 4 8 16 32 17193

A6 one 5 × 5 convolutional layer ReLU 6 12 24 48 38389

A8 one 5 × 5 convolutional layer ReLU 8 16 32 64 67985

A10 one 5 × 5 convolutional layer ReLU 10 20 40 80 105981

A12 one 5 × 5 convolutional layer ReLU 12 24 48 96 153377

B4 two 3 × 3 convolutional layers ReLU 4 8 16 32 18549

B6 two 3 × 3 convolutional layers ReLU 6 12 24 48 41539

B8 two 3 × 3 convolutional layers ReLU 8 16 32 64 73673

B10 two 3 × 3 convolutional layers ReLU 10 20 40 80 114951

B12 two 3 × 3 convolutional layers ReLU 12 24 48 96 165373

aThe last column indicates the total number of trainable weights (i.e., filter coefficients, dense layer weights and bias
terms).

the channels corresponding to the scaled in-focus image, the scaled difference between the two
±1 µm defocused images and the scaled difference between the two ±25 µm defocused images.
Given that nuclei were roughly 20–40 pixels in diameter, we chose a patch size of 61 pixels so
that parts of the surrounding cell body could be used in predicting whether the center of the
patch was inside the nucleus. The 61-pixel patch size also works well with the design of the
neural network resulting in no need for padding in the convolutional layers. This 61 × 61 × 3
patch is fed into a series of four processing stages—each stage starts with a convolutional block
(ConvBlk) consisting of one or more unpadded convolutional layers using rectified linear unit
(ReLU) activation functions, with the final convolutional layer in each block having a stride of 2
to implement downsampling. We elected to use striding instead of pooling to simplify the neural
network and reduce computation time, following the ideas in [28]. The width and height of the
output after each processing stage were designed to be compatible with unpadded convolution,
and the depth increases two-fold after subsequent processing stages—this results in an initial
expansion in the amount of data passing through the network, followed by gradual reduction
for subsequent stages. The output of the last processing stage is fed into a dense layer with a
sigmoidal activation function to yield a single value that should be 1 if the center of the patch is
inside the nucleus and 0 otherwise.

As is typical of binary classification problems, we used a standard cross-entropy loss function,

loss =
1
N

∑︂N

n=1
−ln log(pn + 10−7) − (1 − ln) log(1 − pn + 10−7), (1)

where ln and pn are the ground-truth label and the neural network’s predicted value, respectively,
for the n th example, and N is the total number of examples presented during training. The 10−7

factor to prevent taking the logarithm of zero was the standard value provided by the TensorFlow
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framework. We note that the neural network can only predict results for pixels in a region that is
shorter by 30 pixels on each side compared to the full image, since we only consider full 61 × 61
pixel patches. Therefore, an input image set consisting of 2048 × 2048 pixel images can only
predict the center 1988 × 1988 region.

For prediction and evaluation, i.e., when we wish to output entire images, we make a
modification to the neural network to improve computation efficiency. We start with the fact that a
convolutional layer with stride s and dilation d feeding into a second convolution layer is the same
as a convolutional layer with stride 1 and dilation d feeding into a second convolution layer with
dilation sd. By converting to dilated convolutional layers, we can expand the input and outputs to
have blocks of adjacent patches processed in parallel. For example, by using a 200 × 200 input
patch, we can simultaneously predict the output in a 140 × 140 block. Block-wise computation
allows us to reuse previously computed convolutions and is one of the reasons why convolutional
neural networks are so efficient [29]. We do not use this approach in training as we find that it
causes the optimization algorithm to get stuck in a suboptimal local minimum, possibly due to
neighboring examples being too highly correlated with each other. In summary, the predicted
output image from the neural network is computed from several large non-overlapping output
blocks with corresponding large overlapping input patches; input-output pairs of the same size
are batched together.

2.3. Blob detection and sieving

Given an output image from the neural network, blob detection followed by sieving of unlikely
candidates is used to generate a list of detected nuclei; this process is summarized in Fig. 5. Blob
detection starts with a difference-of-Gaussians (DoG) approach, similar in concept to the one
used in the popular SIFT descriptor [30] but using a scale-space that is sampled much more finely
(seven levels across scale) for detecting blobs of diameters between 21.2 and 42.4 pixels. The
coordinates of local minima in the difference-of-Gaussians representation are used to compute
an x-y location as well as a blob size. We fit each blob to an ellipse by analyzing a circular
patch of pixels centered on the x-y location—we treat the patch as a two-dimensional probability
mass function, and we compute the mean and diagonalize the variance of this virtual random
two-vector in order to obtain the centroid, major and minor axes of an ellipse. Overlapping
ellipses (detected using bounding boxes and then an image-based overlap method, grouped using
an adjacency matrix) are merged by fitting an ellipse to the union of the overlapping ellipses.
Ellipses whose areas are too small (less than 50 square pixels, or roughly a circle with 8 pixel
diameter) or too large (more than 2000 square pixels, or roughly a circle with 50 pixel diameter)
are removed. A score for each ellipse is computed by summing the pixels inside the ellipse and
dividing by the ellipse area. Finally, only ellipses with a score higher than a user-set threshold are

Fig. 5. Overview of the blob detection and sieving process used to locate nuclei using the
output of the neural network.



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1690

kept. This threshold is usually determined empirically from validation data and has an impact on
the accuracy of our approach.

3. Methods

3.1. Sample preparation

Human MSCs (hMSCs) obtained commercially (Lonza) were cultured in Dulbecco’s modified
Eagle medium (DMEM) with low glucose and pyruvate (Thermo Fisher 11885076) supple-

mented with 10% (v/v) of fetal bovine serum (FBS) (Thermo Fisher 26140079) and 1% (v/v) of
Penicillin-Streptomycin (10,000 U/mL) (Thermo Fisher 15140122). The hMSCs were seeded in
six-well glass bottom plates (Cellvis P06-1.5H-N) prior to imaging. Culture media was changed
every 2–3 days and cells were passaged at 80% confluency. All the cells were grown in a
humidified atmosphere with 5% carbon dioxide and a constant temperature of 37°C.

A paraformaldehyde solution, 4% in phosphate-buffered saline (PBS), (Santa Cruz sc-281692)
was used to fix the hMSCs. The cells were stained using Hoechst 33342 (Sigma Aldrich
B2261-25MG), via a 1:750 dilution in basal DMEM of a 10mgmL−1 stock solution.

3.2. Imaging

Imaging was performed using a motorized inverted fluorescence microscope (Olympus IX83)
fitted with an sCMOS camera (Hamamatsu ORCA-Flash 4.0 V3 digital) with 2048 × 2048
pixels of size 6.5 µm. MetaMorph (Intelligent Imaging Innovation Inc.) was used to automate
the image capture process, and all images were captured using an Olympus UPLSAPO 10X2
objective (10×/0.4 NA). Each captured image set consists of a stack of five bright-field images
under collimated illumination and a corresponding fluorescent image.

The bright-field images were taken at focus as well as at positions ±1 µm and ±25 µm away
from focus. Illumination was with a U-LH100-3 100W halogen lamp, and the microscope was
set up in Köhler illumination, but with the aperture stopped closed to the minimum possible to
produce a roughly collimated illumination beam. A U-FBNA mirror cube, typically used for
imaging green fluorescent protein (GFP), was inserted in the imaging path so that its emission
filter centered at 530 nm can keep the image roughly monochromatic. The combination of a
stopped-down aperture and emission filter was used to ensure high contrast, as was mentioned in
Section 2.1. Fluorescence images were captured under excitation by the X-Cite XLED1 UVA
module (360 nm to 380 nm) and a U-FUW mirror cube, appropriate for the Hoechst dye, was
used to filter both excitation and emission light.

With ease of application in mind, we kept the imaging apparatus free from technicalities
difficult to reproduce in non-specialized laboratories. We wrote a MetaMorph journal (a program
which consists of a sequence of instructions for the microscope) to automate the capture of
each image set. The journal starts with capturing the fluorescence image at the focal plane
(adjusted according to the bright-field imaging set-up) with an exposure time of 100 ms. Next,
the illumination, aperture and filter cubes are swapped for collimated bright-field imaging. The
stack of collimated bright-field images was taken in the order of: 25 µm, 1 µm, −1 µm, −25 µm,
and finally back to the in-focus plane, each at an exposure time of 150 ms. A separate journal was
utilized to control the position of the stage and automate its movement. The following datasets
were captured, with each dataset consisting of multiple image sets.

• MSC image datasets (MID) 1
MSCs were seeded at a density of 5000cm−2 into four out of six wells in a six-well glass

bottom plate. The growth media was changed after one day to remove unattached cells, and
the cells were allowed to culture for an additional two days before being fixed and stained for
imaging.
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A total of 78 image sets were taken for the first two wells, referred to as MID1a and MID1b,
respectively, and 80 image sets were taken for the third well, referred to as MID1c. The fourth
well was not imaged. The stage was translated to different positions with non-overlapping
fields-of-view for each of the image sets.

• MSC image datasets (MID) 2
MSCs were seeded at a density of 1500cm−2 into all six wells of a six-well glass bottom plate.

The imaging procedure was slightly more complicated, as we wished to also image cells before
being fixed or being stained while trying to minimize movement of the cells in the interim; we
found that 10 to 15 image sets per well worked best. For this dataset, three wells (resulting in
MID2a, MID2b and MID2c) were imaged using the following procedure for each well, with all
imaging for one well finished before proceeding to subsequent wells.

For each well, we first captured image sets of the live cells at 10 different locations (datasets
labeled “live”). The well plate was then removed from the microscope to fix the cells (and new
growth medium changed) before placing back inside the microscope. We then captured image
sets of the fixed cells at the same 10 locations (datasets labeled “fixed”). The well plate was
removed again to add fluorescent dye before placing back inside the microscope. Finally, we
captured image sets of the stained cells at the same 10 locations again (datasets labeled “stained”).
MetaMorph and a Prior XY translation stage were used to memorize the various positions within
the wells so that the positions were repeatable. A manual realignment was performed before
imaging the fixed and/or stained images so that small shifts in the well plates were roughly
adjusted for. Any remaining shifts were registered using software in the processing pipeline.

• MSC image dataset (MID) 3
The remaining three unimaged wells in the six-well glass bottom plate for MID2 were allowed

to culture for two days before being imaged, resulting in MID3a, MID3b and MID3c. The
imaging procedure was roughly the same, also generating live, fixed and stained datasets. Cells
in MID3 showed lower cell density (number of cells per unit of area). Hence, 15 positions per
well were imaged to compensate. After imaging, it was found that image sets for one of the 15
positions in MID3a was erroneous, and therefore all the images for that position were omitted.

The collected datasets are summarized in Table 2. Cell counts were verified manually. They
are not available for MID1a, since it was only used for training the neural network. However, cell
density in all MID1 samples was comparable.

3.3. Training

The same 78 image sets from MID1a were used to train ten different neural networks, each
corresponding to one of the ten designs given in Section 2.2. From the fluorescence image in
each image set, we generated a “ground truth” image specifying which pixels belonged to nuclei
according to the method described in Section 3.3.1. Augmentation, described in Section 3.3.2
below, was also used to increase the training set and robustness, resulting in a total of roughly 2.5
billion binary classification examples being presented to the neural network during training. All
neural networks were trained for a total of one epoch, with a snapshot of each neural network
saved after every subepoch.

We shuffled the input examples by starting at a randomly picked image index for the first
example to be fed into the network, and each example we subsequently pick is from an index that
is the previous index plus a number M modulus N, where N is the total number of examples and
M≥N / 2 is a number coprime with N. This simple linear congruential generator ensures that any
contiguous sequence of N indexes has only unique indexes. We used this shuffling approach to
make sure adjacent examples were sufficiently uncorrelated with each other (unshuffled neighbors
were highly correlated due to the sliding window approach used to generate the examples) while
not needing to keep a large array of randomly shuffled indexes. The shuffled examples were then
assembled into batches before feeding into the neural network during the training process.
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Table 2. Summary of collected image datasets.

Sample name
Cell count

Dataset label Number of images Fixed Stained
Total Min - Max

MID1a Not counted - - 78 Yes Yes

MID1b 12948 112 - 238 - 78 Yes Yes

MID1c 13149 105 - 240 - 80 Yes Yes

MID2a 870 59 -103
live 10 No No

fixed 10 Yes No

stained 10 Yes Yes

MID2b 930 73–127
live 10 No No

fixed 10 Yes No

stained 10 Yes Yes

MID2c 822 58 - 117
live 10 No No

fixed 10 Yes No

stained 10 Yes Yes

MID3a 574 25 - 53
live 14 No No

fixed 14 Yes No

stained 14 Yes Yes

MID3b 599 26 - 57
live 15 No No

fixed 15 Yes No

stained 15 Yes Yes

MID3c 593 32 - 65
live 15 No No

fixed 15 Yes No

stained 15 Yes Yes

To iteratively reduce the loss function, we used the Adam optimization algorithm [31] with a
learning rate of 8 × 10−3, ϵ = 0.1, and standard parameters β1= 0.9 and β2= 0.999. The higher ϵ
value was used to prevent the optimization algorithm from catastrophic failure when the estimated
second moment of the gradient could sometimes approach zero due to an unlucky sequence of
inputs. Instead of decaying the learning rate, we opted to periodically increase the batch size by a
factor of two every two subepochs (starting with a size of 256 and ending with 2048) in order to
achieve the benefits of simulated annealing while improving parallelism for training efficiency, as
was demonstrated in [32].

All neural networks were implemented using the TensorFlow framework in Python, and code
was executed on a workstation equipped with a 6-core Intel Xeon processor running at 2.6 GHz,
64 gigabytes of memory, and an NVIDIA GeForce GTX-1060 graphics processor that included 6
gigabytes of onboard memory. Custom code was used to generate the relevant training statistics
as well as subepoch snapshots.

3.3.1. Nuclei images

For training, we generated “ground-truth” images that marked which pixels in an image set
corresponded to nuclei. Since the Hoechst-stained images yielded good contrast, we employed a
simple local thresholding approach [33,34] to binarize the image, with bright pixels belonging
to nuclei. The thresholding algorithm looks at a 39 × 39 pixel window, finds the minimum
and maximum values, and marks the center pixel as 1 if and only if (a) its value exceeds the
average of the minimum and maximum, and (b) the difference between maximum and minimum
is greater than a threshold, which we set to 10% of the image’s maximum pixel value in order to
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ignore noise in regions of the image with no nuclei. The window size of 39 pixels was set to be
approximately the maximum size of a nucleus so that for each pixel inside the nucleus, its window
contained pixels both inside and outside the nucleus. Setting the window size too large runs the
risk of having brightly labeled nuclei suppress nearby nuclei that are not as brightly labeled, and
setting the window size too small can result in nuclei in the binarized image having holes in the
middle. The automatic generation of nuclei images is not perfect, but it is scalable and the effects
of erroneous binarization can be ameliorated when the neural network is fed enough examples.

3.3.2. Augmentation

Sometimes it may be difficult to produce that many images for training, so we also employ data
augmentation techniques to increase the training set. Namely, we expand the data set eight-fold
by allowing for 90-degree rotations and mirroring for each patch. Hence, a single image can yield
32 million training examples instead of just 4 million, and this augmentation helps prevent the
neural network from overfitting and being rotation-sensitive. To clarify terminology, we say that
we have trained for one epoch when all of the examples, including the augmented examples, have
been presented to the neural network, and we have trained for one subepoch when the number of
examples presented to the network is equal to the number of original (unaugmented) examples.

3.4. Verification

To verify the output of our pipeline, we need to compare the detected nuclei with nuclei manually
labeled according to Section 3.4.1 from raw fluorescent images. As nuclei staining occurred after
cell fixation, images from live cells from MID2 and MID3 were paired with their corresponding
fluorescent image from the dataset “stained” to generate the manual labels. Pairing required
automatic offset alignment implemented according to Section 3.4.2. The two sets of nuclei
positions are then matched using an algorithm described in Section 3.4.3. The resulting counts
of true positives, false positives and false negatives were used to compute various statistics such
as precision (fraction of predicted nuclei that are true nuclei), recall (fraction of true nuclei that
were predicted), F1 score (harmonic mean of precision and recall), and relative count (ratio of
the number of predicted nuclei to the number of true nuclei).

3.4.1. Manually-labeled nuclei positions

We used a separate semi-automated procedure to generate ground truth nuclei positions from the
Hoechst-stained images. The procedure started with first binarizing the Hoechst-stained image
using moment-preserving thresholding [35], including ignoring pixel values below a certain
value (a pixel value of 50 in an 8-bit image in our case) for noise rejection. Binarization was made
intentionally different from the binarization used for training to avoid the introduction of bias.
Binarization was followed by morphological erosion of 8 pixels and then centroid computation of
the resulting contiguous blobs, performed automatically by ImageJ’s “Find Maxima. . . ” routine.
Rough automatic nuclei position extraction was followed by manual adjustment of the positions
including adding or deleting nuclei. As a graphical user interface was needed, both parts of the
procedure were implemented in ImageJ.

3.4.2. Alignment

Since the specimen had to be physically removed from the microscope during the imaging for the
MID2a,b,c and MID3a,b,c data sets, the resulting image sets had to be registered—we needed to
know which pixels in the live cell and fixed cell images corresponded to a pixel in the stained
cell image. Assuming rotations to be small, we only attempted to calibrate for translations. The
procedure consisted of using block matching across the 25 µm defocused images corresponding
to the two datasets we wished to register. We considered nine 256 × 256 pixel blocks evenly
distributed in a 3 × 3 matrix in one image; for each block, we attempted to find a 256 × 256 block
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in the other image that maximized the Pearson correlation coefficient between them, examining
all blocks shifted by at most 30 pixels horizontally or vertically. We then kept the median of the
nine resulting (x, y) shift vectors. This shift vector was used when preparing the inputs to the
neural network by shifting the 1988 × 1988 window of valid pixels in the output (nuclei) image
by an amount determined by the shift vector.

3.4.3. Matching algorithm

Given two sets of nuclei positions, we employed the following technique for generating matches
and determining how many true positives (predicted nuclei match ground truth), false positives
(predicted nuclei with nuclei in the ground truth) and false negatives (nuclei in the ground truth
but not predicted) were present. We first removed nuclei whose centers were within 60 pixels of
the edge of the valid region in the predicted image, since blob detection could not be accurate
with missing information along the margins. We then found the closest nuclei position in the
second set for each nuclei position in the first set, and vice versa, retaining only mutual matches
whose Cartesian distance was less than 30 pixels, which allowed for human error in the placement
of nuclei centers as well as some movement of the cells between the live and fixed imaging
phases in the MID2 and MID3 series. The resulting unmatched nuclei in the predicted set were
considered to be false positives and the unmatched nuclei in the ground truth set were considered
to be false negatives.

3.5. Network and threshold selection

To enable an educated choice on which network design and which training snapshot to use,
a measure of fidelity for each snapshot was calculated as follows. For each snapshot of each
network, output images were generated using the 78 image sets from MID1b. Blob detection and
sieving were performed for 101 candidate threshold values evenly distributed between 0.00 and
1.00 in order to determine an optimal candidate.

To select a threshold, we could choose the candidate threshold value that maximizes the mean
F1 score across all 78 image sets. However, in practice, the mean F1 score as a function of
threshold tends to be a function that is rather flat yet noisy near the maximum, so we instead
choose the threshold that brought the mean relative count closest to 1.0. The F1 score at this
threshold is what we will call the fidelity for that particular training snapshot and network design.

This threshold selection criterion is much more robust to noise and fluctuations than choosing
the maximum F1 score, simply because the mean relative count is always monotonic with respect
to the threshold value (since the nuclei we keep are the ones that exceed the threshold), resulting
in a clear indication of where the optimal candidate occurs. Furthermore, such a selection
generally results in an F1 score close to the maximum F1 score in practice. Finally, choosing a
threshold this way helps reduce systemic bias for counting and also roughly balances precision
and recall, making sure neither one is too low compared to the other.

For each network design, we then chose the snapshot that had the highest fidelity, and we
retained the individual precision, recall, F1 scores as well as relative counts for that threshold and
particular snapshot for further statistical analysis. A network design (and corresponding snapshot)
was then chosen based on both fidelity (which indicates how well the network performs) as well
as the number of trainable weights; we ideally want fewer weights and higher scores.

4. Results

4.1. Training

The total training time as well as the lowest loss function values for the augmented training data
set (MID1a) and the validation data set (MID1b) are given in Table 3. Also listed are the highest
fidelity attained across all possible snapshots. The pattern of total training times suggest that
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the preprocessing on the CPU for feeding the input data to the neural networks dominated the
training time for simpler networks with fewer layers (the A series as well as B4 and B6), whereas
actual training on the GPU started playing a larger role with the bigger networks, as seen by the
appreciable increase in training time starting with B8.

Table 3. Training statistics for the ten network design candidates, including the lowest
training loss and validation loss values across all checkpoints for each candidate as well as

maximum attainable fidelity. The eventually chosen candidate, B8, is highlighted in bold.

network name training time min. loss (training) min. loss (validation) max. fidelity

A4 43.2h 0.0158 0.0160 0.962

A6 43.1h 0.0130 0.0133 0.972

A8 43.1h 0.0109 0.0115 0.978

A10 43.4h 0.0101 0.0104 0.981

A12 43.8h 0.00940 0.0103 0.980

B4 44.4h 0.0114 0.0131 0.968

B6 43.1h 0.00965 0.0105 0.977

B8 54.5h 0.00857 0.00948 0.980
B10 62.7h 0.00799 0.00881 0.982

B12 69.8h 0.00769 0.00867 0.983

4.2. Network and threshold selection

Ideally, we want a network with high fidelity with as few weights as possible (i.e., more efficient
and less prone to overfitting). As can be seen in Fig. 6, since both the A series and B series
curves flatten after A8 and B8, respectively, it looks like an optimal choice may be A8 or B8.

Fig. 6. Highest mean fidelity achieved for each network design shown as hollow markers:
blue circles for the A series, red squares for the B series and a green square for the chosen
B8 network. For each network, scatter plots denote fidelity for each image set in MID1b
when using the snapshot and threshold that maximizes mean fidelity. Probability that two
networks perform the same are given by p-scores computed using a paired t-test.

We chose B8 over A8 because B8 provided a statistically significant advantage (probability
p= 0.010 of no advantage from a paired t-test) with only a small (8%) increase in number of
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Fig. 7. Training loss (red filled circles), MID1b validation loss (violet open diamonds) and
fidelity (blue filled squares) for each of network B8’s eight checkpoints during training. The
chosen checkpoint, circled in green dashes, has the largest attainable mean F1 score.

Fig. 8. Precision-recall curve for detected nuclei from validation dataset MID1b. The solid
green curve gives the mean across all 78 images of the precision and recall for various
possible thresholds in the blob-detection pipeline. For a subset of thresholds (from left,
0.90, 0.75, 0.00), hollow red squares indicate the mean precision and recall values, and
corresponding small red diamonds indicate actual values across 78 images. The chosen
threshold’s (0.33) mean precision and recall values are illustrated using a blue hollow
circle, with corresponding blue scatter points. A dashed light gray diagonal line indicates
precision-recall values that result in no error in the overall cell count, and a hatched violet
line on the top right indicates points where the F1 score is equal to the fidelity.

weights. Further paired t-tests show a significant improvement of B8 over B6 as well (p= 0.0045
chance of no advantage), while there is not a statistically significant difference between B8 and
A10 (p= 0.51). Between B8 and B10 is a statistically significant improvement (p= 0.10), but we
decided to use B8 because B10 was much more computationally expensive. We chose to use
paired t-tests since all pipelines were using the same inputs to generate the validation data, and
therefore any pair of results from the same input are correlated, making standard t-tests invalid.

In Fig. 7 we show for completeness the per-subepoch training set and validation set loss
function values concurrent with the fidelity. For selection of snapshot, we used fidelity as opposed
to the validation loss value, since the former quantifies the potential performance of the entire
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pipeline while the latter only quantifies the neural network part of the pipeline, which we are not
directly interested in. However, in this particular case, the snapshot with the highest fidelity also
corresponded to the snapshot with the lowest validation loss.

The resulting threshold corresponding to the chosen network design and snapshot was 0.33.
For the chosen network and snapshot, a graph of mean precision versus mean recall (means
taken over all 78 image sets in MID1b) is shown in Fig. 8 along with scatter plots of precision
versus recall for individual image sets at various threshold values. The mean precision, recall
and F1 score for the validation data at the chosen threshold were all equal to 0.980 within three
significant digits.

4.3. B8 network for fixed and stained data from the same preparation

We first applied the trained network and processing pipeline to dataset MID1c to test the accuracy
of our approach in ideal conditions (i.e., cells prepared at the same time, with fixing and staining
for accurate ground truth extraction). Using the chosen neural network snapshot and blob
detection threshold, we computed precision, recall, F1 score, relative count and predicted counts
for the 80 image sets in dataset MID1c, with the results shown in Fig. 9 and Table 4.

Fig. 9. On left, box plots for the precision, recall, F1 score and relative count. Top and
bottom whiskers correspond to maximum and minimum values, respectively, boundaries of
boxes give first and third quartiles, dashed line indicates median, and solid dot indicates
mean. On right, scatter plot of predicted cell count per image versus actual cell count per
image, with dashed line indicating an ideal perfect predictor.

Table 4. Minimum, first quartile, median, third quartile, maximum, mean and standard
deviation for computed statistics from dataset MID1c.

min. Q1 median Q3 max. mean std. dev.

precision 0.949 0.981 0.986 0.993 1.00 0.985 0.0104

recall 0.936 0.974 0.982 0.992 1.00 0.982 0.0132

F1 score 0.960 0.979 0.984 0.990 1.00 0.984 0.00810

rel. count 0.950 0.985 1.00 1.01 1.04 0.997 0.0178

From the results, it is apparent that performance on the test dataset MID1c is in agreement with
the predicted performance from the validation dataset MID1b; MID1c’s mean precision, recall
and F1 scores of 0.985, 0.982 and 0.984, respectively, match closely with the corresponding
scores from MID1b. The mean relative count for MID1c is also very close to 1.00, which means
that on average the cell count reported by our pipeline for MID1c should be unbiased. Although
in extreme cases the counts differed by up to 5%, at least half of the predicted cell counts were
within 1.5% of the actual cell counts.
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In addition to cell counting, we tested the reliability of our method to quantify morphological
parameters such as area and eccentricity of the nuclei. The high correlation (Pearson Coeff.
0.8933; p< 0.0001) shown in the left plot of Fig. 10 demonstrates the quality of the match
between our pipeline’s prediction of the area of cell nuclei to estimates obtained using thresholded
fluorescent images. The right graph shows an example of shape statistics our pipeline can
generate to discriminate subpopulations of cells at different biological states [18].

Fig. 10. On left, a two-dimensional histogram of predicted nuclei area from our method
versus nuclei area estimated from fluorescence images; dashed line indicates perfect fit
(Pearson Coeff. 0.8933; p< 0.0001). On right, a two-dimensional histogram illustrating the
statistical relationship between eccentricity (how slim a nucleus is) versus area based on
data gathered via our method.

An example of a challenging case where our method is able to correctly identify nuclei and
count cells is shown in Fig. 11; in this 500 × 500 pixel crop of one of the image sets, there are
optically thick regions that look very similar to cell nuclei and also very dense regions as well.
Two circular blobs pointed to by orange arrows are correctly identified as not being nuclei whereas
a similarly smooth circular region immediately below the two blobs is identified as a nucleus.
The optically thick region at the center top has a non-uniform texture, but it is correctly identified
as not a nucleus whereas another large and textured optically thick region on the right edge of
the image is correctly identified. Furthermore, it is very difficult to visually examine and count
the number of nuclei in the region inside the dashed green ellipse, but our approach correctly
identifies all the nuclei and do not distort their relative shape or sizes. Another challenging
example is shown in Fig. 12; in this case our method proved to be able to correctly recognize and
distinguish the nuclei of partially overlapping cells (blue arrows), whose fluorescence images
overlaps at low thresholding values. At present, we are unable to predict the performance of our
method in case of nuclei with a high degree of overlap, which may occur at exceptionally high
cell densities, as this scenario was not observed in any of our images.

While the overall fidelity was quite high at over 0.98, we show an example of an extreme
failure case in Fig. 13. The false negatives result from the neural network not generating a bright
enough blob to be recognized by the blob detection scheme, likely due to inability of the network
to recognize that particular cell shape. The neural network also misidentified thick parts of a
large cell body as other nuclei. Despite these problems, the neural network is able to identify
tightly spaced nuclei for cells of various shapes, including nuclei that would be difficult to discern
and/or separate with the human eye. The neural network also manages to ignore detritus, and for
many cells it provides a good approximation to nuclei area and shape as well.
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Fig. 11. True negatives (orange arrows pointing diagonally) and true positives (blue arrows
pointing up) shown superimposed over the Hoechst-stained image (left), the neural network
prediction output (middle), and a quantitative phase image (right) generated from the ±25 µm
images using a standard TIE algorithm provided by [23]. A green dashed ellipse encloses a
region containing a high concentration of cells. Scale bar is 50 µm.

Fig. 12. Examples of nuclei in intimate contact (blue arrows) shown superimposed over the
Hoechst-stained image (left), the neural network prediction output (middle), and a brightfield
image (right) obtained at -25 µm defocus. Scale bar is 50 µm.

Fig. 13. An extreme failure case with false positives (blue arrows pointing left) and
false negatives (green arrow pointing down) superimposed over the Hoechst-stained image
(left), the neural network prediction output (middle), and a quantitative phase image (right)
generated from the ±25 µm images using a standard TIE algorithm provided by [23]. Scale
bar is 50 µm.
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4.4. B8 network for live or unstained data from a different preparation

For a more challenging scenario, we used our currently configured pipeline to count cells from
the MID2a datasets, which imaged cells from a totally different preparation. The results are
shown in Fig. 14. Overall, there is little difference between the stained and unstained (but fixed)
results, and they are remarkably similar to the results obtained for cells from the same preparation
as the training data, demonstrating the robustness of our approach when applied to independent
datasets of similar nature. There is, however, a significant drop in precision for the live cell case,
with approximately 15% overcounting. We also applied our currently configured pipeline to
the MID2b dataset, showing qualitatively similar results, as in Fig. 15. This drop in precision
is likely caused by changes in index of refraction or aspect ratios of the cells and nuclei due to
chemical processes (protein cross-linking) used in the fixation process.

Fig. 14. On left, box plots of cell counting statistics generated from images of stained, fixed
and live cells from MID2a; top and bottom whiskers indicate minimums and maximums,
whereas boxes indicate quartiles. On right, a scatter plot of predicted cell count per image
set from our pipeline versus manual counts from fluorescent images. The coefficient of
determination for a direct mapping is given by R2, while the correlation coefficient ρ gives
the goodness of fit for a linear fit.
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Fig. 15. On left, box plots of cell counting statistics generated from images of stained, fixed
and live cells from MID2b; top and bottom whiskers indicate minimums and maximums,
whereas boxes indicate quartiles. On right, a scatter plot of predicted cell count per image
set from our pipeline versus manual counts from fluorescent images. The coefficient of
determination for a direct mapping is given by R2, while the correlation coefficient ρ gives
the goodness of fit for a linear fit.
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4.5. Alternate B8 network

To overcome the above-mentioned problem as well as minimize the effects of sample-to-sample
variability, we trained another neural network with the same B8 architecture using image data
from MID2a and MID3a. A total of 72 image sets was used as training input (10 MID2a live
images, 10 MID2a fixed, 10 MID2a stained, 14 MID3a live, 14 MID3a fixed and 14 MID3a
stained). Each of these datasets was paired with the corresponding stained dataset (MID2a and
MID3a stained) as desired output. Further, calibration was performed using the MID2b and
MID3b data sets, with different thresholds for the live, fixed and stained stages. This alternate
pipeline was then applied to the MID2c and MID3c data sets.

The resulting performance of this alternate pipeline is compared with the original pipeline in
Fig. 16 as well in Fig. 17 versus Fig. 18. There is noticeable improvement using the alternate
pipeline for MID2c, but performance is relatively unchanged for MID3c.

One possible factor that could lead to poor performance for MID3c is that the similarly-imaged
MID3a training data set contains relatively fewer cells per field of view when compared to the
MID2a training data set; in Fig. 18, the MID3c and MID2c datasets contain in each image set
(field of view) on average approximately 30 and 70 cells, respectively. A smaller representation
of cells in the MID3a training set would mean that there may be certain variations in cellular
shape and structure that appear in MID3c but not in MID3a, leading to poorer performance.

Given these results, we hypothesize that performance would be best in cases where (1) training
is performed using samples as optically similar to the samples to be measured, and (2) there are
enough cells per training set to properly characterize all the possible variations in cellular shape,
structure and orientation.
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Fig. 16. Box plots of the resulting precision, recall, F1 score and relative counts for the
live, fixed and stained images from the MID2c and MID3c datasets, along with results
from MID1c for reference. For the MID2c and MID3c datasets, the faint and hatched box
plot (with diamond marker indicating the mean) represents the result from the original B8
network, whereas the clear box plot (with circular marker indicating the mean) represents
the result from the alternate B8 network trained with MID2a and MID3a data.
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Fig. 17. Predicted versus actual cell counts shown as a scatter plot for all the image sets in
MID2c (filled circles) and MID3c (hollow triangles). The B8 network was used.

Fig. 18. Predicted versus actual cell counts shown as a scatter plot for all the image sets in
MID2c (filled circles) and MID3c (hollow triangles). The alternate B8 network was used.

5. Discussion

Results with the MID1c dataset demonstrate that our learning-driven processing pipeline is
capable of providing accurate nuclei localization and cell counts when applied to specimens
prepared contemporaneously with the specimens used to train the neural network. Nuclei that
would be difficult to identify with the human eye from quantitative phase images are readily
discovered by the deep neural network. In an ideal setting (MID1c), our approach outperforms
cell-counting methods based on holography visualization [4] (w.r.t. coefficient of determination)
and cell confluency determination [5] (w.r.t. percent error in cell count).

Our neural network behaves very similarly in function to one of the trained networks from
[17], although we optimized the defocus distances and reduced the number of input images due
to a priori knowledge that information is present in the optical thickness profile of the specimen.
Furthermore, since our goal is not to produce synthesized fluorescence images for human viewing,
but rather as input to an automated framework, we are able to simplify the design of our neural
network and preprocessing of training data, leading to more efficient computation.

Since our method generates statistics about the shape of the nuclei, we can apply our approach
to biological studies in order to investigate how these statistics can be used to predict pluripotency,
so that cells in culture can be noninvasively surveyed for viability. For example, it was shown in
[18] that nucleus size can be used to predict pluripotency.

Results for the fixed but not stained cells in MID2a show that the neural network is indeed
extracting implicit phase information from the images and not somehow picking up out-of-band
information from the nuclei stain. A comparison of results between fixed cells and live cells show
that there does exist systematic prediction error for live cell specimens, most likely due to the fixing
process changing the phase profile of the specimen; it was observed that chemical fixation using
paraformaldehyde induces shrinkage of the cells (due to protein crosslinking) and may sometimes
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cause the formation of bubble-like structures in the cells. While recalibration/retraining can be
used to offset systematic prediction error for live cells, faster automated imaging and live staining
can be a more practical solution to this problem, i.e., for a cell culture under study, a subset of the
cells is sampled for the training process. We think that this is a good potential avenue for future
study based on the fundamentals we established in this paper.

The current design of the pipeline can be used for cell-counting applications when monitoring
cell culture growth, if a specimen can be prepared contemporaneously and then fixed and
stained for training after the experiment. Training times can be improved with higher end
hardware, as we used the mid-end GeForce GTX 1060 GPU, whereas newer and higher-powered
GPUs can provide much higher memory and computation throughput. Furthermore, we used
a straight-forward blob-detection algorithm for the final stage in the pipeline, whereas a more
sophisticated algorithm (e.g., a neural network) may be able to achieve better accuracy. Finally, a
transfer learning approach [36] where we keep the convolutional layers of our network but retrain
the weights for the fully-connected layer can significantly decrease the training time required.
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